
Journal of Computational Physics 224 (2007) 150–167

www.elsevier.com/locate/jcp
Three-dimensional adaptive Cartesian grid method
with conservative interface restructuring and reconstruction

Rajkeshar Singh a, Wei Shyy b,*

a Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
b Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Received 1 September 2006; received in revised form 18 November 2006; accepted 22 December 2006
Available online 24 January 2007
Abstract

Multiphase flows associated with interfacial dynamics, steep jumps in fluid properties and moving boundaries between
different phases pose substantial computational challenges in terms of both modeling as well as computational efficiency.
The present work extends a marker-based immersed boundary, or front tracking, technique to model the three-dimen-
sional interfacial dynamics. It tracks the moving boundary using triangulated surface grids and solves the flow governing
equations on a stationary Cartesian grid. A locally adaptive grid is employed to help meet the resolution requirements
based on the interface location and solution features. The interface resolution is controlled via a conservative restructuring
technique satisfying mass continuity. An improved level contour reconstruction algorithm for topology change, preserving
the interface connectivity information, is presented highlighting various algorithmic difficulties and implemented remedies.
The outlines of a finite-volume, staggered grid Navier–Stokes solution using the projection method are discussed. The
impact of conservative interface restructuring and reconstruction has been assessed against mass-conservation and spuri-
ous velocity errors. The overall capabilities of the developed algorithms have been demonstrated for large density ratios,
O(1000), interfacial flows using various rising bubbles and drop collision/coalescence computations involving coalescence
and break-up dynamics.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Multiphase flow computations offer a wide variety of challenges due to presence of multiple length and time
scales concerning both accuracy as well as computational efficiency. Such flows are characterized by the pres-
ence of an interface that evolves with the flow and exhibits complex shapes and topological changes. Besides
the challenges in numerical modeling of the interfacial effects such as the treatment of discontinuities in the
fluid and flow properties, accurate interface tracking itself is a difficult and challenging issue. In Refs. [1,2],
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2006.12.026

* Corresponding author. Tel.: +1 734 936 0102; fax: +1 734 936 0106.
E-mail addresses: rks@ufl.edu (R. Singh), weishyy@umich.edu (W. Shyy).

mailto:rks@ufl.edu
mailto:weishyy@umich.edu


R. Singh, W. Shyy / Journal of Computational Physics 224 (2007) 150–167 151
background information on the interfacial dynamics and moving boundary computations is reviewed. Overall,
there are three main categories of interface tracking methods: Lagrangian; Eulerian; mixed Eulerian–Lagrang-
ian. The Lagrangian methods adopt a body fitted grid approach with the interface as a boundary and are, in
general, the most difficult choice for three-dimensional computations. As opposed to that, Eulerian methods
such as volume of fluid and level set methods are among the most convenient techniques. Details of these Eule-
rian methods and recent advances addressing issues related to mass-conservation and geometry-computation
can be found in [3–6]. The marker-based front tracking approach [7–17] falls in the Eulerian–Lagrangian cat-
egory. It tracks the interface using a set of markers moving passively on a stationary background, where all the
flow computations are performed.

A traditional front-tracking method tracks three-dimensional interfaces using triangulated surfaces. The
most serious drawback of this approach is often attributed to the algorithmic complexity, especially in
maintaining the interface connectivity information when topology changes occur. Some of the recent algo-
rithmic developments in literature have been geared towards simplifying the approach by eliminating the
need for explicit connectivity information. The connectivity-free point-set method of Torres and Brackbill
[12] and connectivity-free tracking of triangular elements by Shin and Juric [13] are some of the key efforts
in this direction. Of these, the method of Shin and Juric [13], using connectivity-free tracking and level-
contour-based interface reconstruction, is an algorithmically convenient and attractive option. However,
owing to the lack of connectivity information, the method in [13] has to reconstruct the interface for
not just topology change but also the interface resolution control. In this regard, the connectivity infor-
mation allows greater flexibility in dealing with flows with multiple interfaces in close proximity. An exam-
ple is bubbly flows, such as those simulated by Esmaeeli and Tryggvason [14], where O(100) bubbles move
in close proximity without merging with each other. In such flows, a connectivity free tracking may intro-
duce undesirable mergers while performing the level-contour-based reconstruction to control the interface
resolution.

The present work uses the Eulerian–Lagrangian approach: interface is tracked using triangulated surface
with explicit connectivity information; flow-equations are solved on a background Cartesian grid. The inter-
facial dynamics is modeled using the immersed boundary method [16]. The level-contour-based reconstruction
is used only to perform topology changes. Interface tracking with triangulated surfaces and level-contour-
based reconstruction has also been reported in [15]. In the present paper, the reconstruction algorithm and
the various associated difficulties are reviewed, and remedies for maintaining valid interface connectivity data
are proposed, implemented, and tested. It is demonstrated that the approach developed is robust and offers
satisfactory accuracy [8]. Furthermore, the effects of interface reconstruction on mass-conservation and spu-
rious velocity currents are also addressed. The call for reconstruction has been automated using a simple
probe-based technique to detect the instances of topology change. In addition, the mass-conserving interface
smoothing approach of Sousa et al. [17] has been extended to handle marker addition and deletion; the out-
come is improved control of the interface resolution. The interface tracking algorithms can be used and
adapted for a variety of interfacial flows.

The implementation of marker-based methods is more involved compared to Eulerian methods; however, it
is capable of resolving features of substantial geometric complexities satisfactorily. Another issue addressed in
the present study is balancing the cost and accuracy of the computation. Since resolution requirements can
quickly make three-dimensional computations cost-prohibitive, an adaptive Cartesian grid method, utilizing
the interface location and solution features, has been developed. Regarding the flow solver, a staggered grid,
finite volume formulation is used for the incompressible flow computation using a projection method. In order
to simplify the staggered grid algorithm, constraints on the velocity and pressure field adopted by Losasso
et al. [19] are incorporated.

In short, the objective of the present effort is development of an integrated three-dimensional computa-
tional capability for interfacial flows involving topology changes. The following aspects represent the specific
improvements and contributions of our work relative to those reported in the literature:

� Interface tracking using triangulated surface grids and development of a mass-conserving technique to con-
trol the interface resolution;
� Detection of topology change via a simple probe-based technique;
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� Subsequent interface reconstruction via level-contours techniques, along with detailed account of algorith-
mic-complexity and mass-conservation;
� Development of a dynamically adaptive Cartesian grid technique with staggered grid computation for two-

phase flows with disparate length scale variations.

It should be noted that compared to Eulerian methods, the present approach, utilizing markers and
enforcing mass-conservation, does add computational cost. However, in our view, it strives to reach a com-
promise between accuracy and computational cost. Alternatively, the sharp interface method [20,21], while
tending to offer higher order of accuracy, is substantially more time consuming, as well as more demanding
in data-structure. While finite difference approaches [22] can be substantially more convenient than finite
volume approaches [21], the conservation laws can not be readily guaranteed in the interfacial region. Fur-
thermore, the adaptive grid technique substantially reduces the CPU time while maintaining desirable
accuracy.

2. Immersed boundary method

The immersed boundary method [16] uses a single-fluid formulation for the entire domain. The key com-
ponents of the method include smoothed treatment of the surface tension force (Eq. (1)) and fluid property
jumps. As shown in Eq. (2), the fluid properties are smoothed using an indicator function I that varies
smoothly from zero (inside interface) to one (outside interface) within 4–5 cells across the interface. The
smoothed density is defined as a linear function of the indicator function while, based on the tangential
stress continuity condition, the viscosity is computed using linear variation of the inverse of kinematic vis-
cosity [23]. The subscripts 1 and 2 denote the properties of fluid outside and inside the interface,
respectively
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This indicator function is computed using the Poisson equation (Eq. (3)), where the integration on the
right hand side is performed over the interface and the terms n and dA are interface normal vector and area
element. The one-dimensional form of Dirac-delta function (d(x�x_interface)) is computed using Eq. (4) [24]
and it is plotted in Fig. 1. The term D represents the discretized form of the three-dimensional delta
function.
Fig. 1. One dimensional delta function with two-cell support.
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3. Interface tracking

The markers (triangle nodes in Fig. 2(a)) are advected using a delta-function based interpolation of the
velocity field. Markers are locally added and deleted at every time step to preserve the spacing between
(D/3, D), where D is the background cell-size. Any volume-error in the interface, introduced by the marker
advection, is recovered explicitly by perturbing the markers in local normal direction. These errors are typi-
cally very small (e.g. O(10�5)%) but, if uncorrected, they may accumulate to become significant.

3.1. Conservative interface restructuring

A typical marker addition and deletion procedure breaks a long edge at its midpoint (Fig. 2(b)), and deletes
a short edge by collapsing it to the mid-point (Fig. 3(a)) [7,17]. This procedure introduces volume errors that,
although small, can accumulate for long duration computations [17]. Such errors are easily avoidable by intro-
duction of a simple step in the edge-deletion algorithm. Although interface volume errors are corrected explic-
itly after each time step, the purpose of this conservative restructuring is to minimize the magnitude of this
artificial correction by avoiding volume-errors due to marker addition/deletion. Also, since the interface is
represented by linear elements, addition or deletion of elements can always produce local changes in the inter-
face curvature. However, the effect of such perturbations is mitigated by the stabilizing effect of viscous forces
and smoothed treatment of the surface tension forces.

Since the marker addition at the edge-midpoint does not produce any volume-error, the marker-addition
procedure is same as shown in Fig. 2(b). The marker deletion procedure has a volume-correction step that
is performed after collapsing the edge to its midpoint. Fig. 3(a) shows marker removal from a two-dimensional
interface by collapsing the edge p2p4 to the mid-point p3, resulting in a net interface-area loss. To correct this
error, first a reference point pref is defined at p3 � n along the local normal vector in Fig. 3(a). A reference area
p1p2p4p5prefp1 is computed and point p3, after marker deletion, is relocated (Fig. 3(b)) along the normal vector
to set the new area p1p3p5prefp1 same as the reference area. The equivalent steps in three dimensions are sum-
marized as:
Interface tracking and marker addition: (a) a triangulated interface; (b) edge splitting at the midpoint to introduce new markers.



Fig. 3. Marker/edge deletion: (a) a 2D edge deleted by collapsing it to the midpoint p3; (b) p3 is relocated to preserve the local interface
area made with reference point pref; (c) a triangle edge to be collapsed to its midpoint p; (d) point p after edge deletion is relocated along the
local normal direction.

154 R. Singh, W. Shyy / Journal of Computational Physics 224 (2007) 150–167
1. Select point p at the middle of the edge to be deleted and compute the local normal vector n (Fig. 3(c)).
2. Define a reference point pref at p � n and a reference volume Uref by adding the volumes of tetrahedrons

made by point pref and all the triangles in Fig. 3(c).
3. Collapse the edge to point p and update interface connectivity information.
4. Compute the new volume U made by pref and the triangles of Fig. 3(d). Recover the reference volume by

relocating p to pref + (Uref/U)n.

3.2. Interface reconstruction for topology change

The level-contour-based reconstruction technique of Shin and Juric [13] is used to handle topology changes
by recreating the interface at indicator = 0.5 contour (Fig. 4(b)). Defects in reconstructed interface-volume are
explicitly corrected by perturbing the markers in local normal direction. In case of multiple reconstructed
interfaces, the magnitude of the volume-correction applied to an interface is inversely proportional to its
Fig. 4. Interface reconstruction: (a) reconstruction is performed if the both the indicator values (I1 and I2) on the two probes are either
smaller or greater than half; (b) cross-section of two three-dimensional interfaces in close proximity, and the corresponding indicator = 0.5
contour; (c) reconstructed interface.
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volume, so that more correction is applied to larger interfaces. Typical volume errors and the magnitudes of
subsequent correction, relative to the background grid resolution, are estimated in the results section.

The instances of interface merger or breakup are detected using two probes placed in opposite directions
along the local normal vector on markers, as shown in Fig. 4(a). The indicator function on these probes is
bilinearly interpolated from the grid. The reconstruction is performed if both the probes from a marker have
indicator function value greater or less than half, representing a situation where the immersed boundary for-
mulation does not ‘see’ an interface (when approximated by indicator = 0.5) between the two probes. In case
of multiple interfaces, the reconstruction is performed only for those requesting it. The probe-based method is
a simple and computationally efficient criterion, performed every few time-steps (every 10 steps in the pre-
sented computations). An example of a reconstructed interface is shown in Fig. 4.

The reconstruction algorithm first creates a set of globally numbered markers at Indicator = 0.5 on the
Cartesian cell edges. Establishing a valid triangulated surface grid-data using this cloud of markers may
require tedious checks with interface-segments created in neighboring cells. A set of simple criteria is used
to simplify the algorithm and avoid data-duplicity. Using the indicator function value, the algorithm flags
the Cartesian cell vertices as:
Fig. 5.
edges e

physic
vertex flag ¼
1 : indicator > 0:5ðoutside interfaceÞ
0 : otherwiseðinside=on the interfaceÞ

�
ð5Þ
A simple rule of associating a marker to an edge is used, stating that an edge can have a marker only if the
two vertices have opposite flags. Similarly, a cell ‘contains’ a marker only if at least one of its edges contains a
marker. Using the vertex flag, it can be seen that a cell will always contain at least three markers or none. All
the cells ‘containing’ a marker are visited and markers associated with the cell are collected to define a convex
polygon. This procedure simplifies the algorithm by eliminating the need to look into the reconstructed inter-
face-segments in neighboring cells. As an example, consider Fig. 5(a) where an edge e2 is constructed only
while visiting cell1, by considering the markers on its vertical edges. Although the markers/vertices of edge
e2 may physically lie on the edges of cell2 as well, cell2 does not ‘see’ any marker as none of its edges have
opposite vertex-flags. Although this approach facilitates a simple cell-by-cell reconstruction approach, it
allows creation of edges/elements with zero length/area. Such a situation arises when, for example, the recon-
structed markers p1, p2 and p3 in Fig. 5(b) have the same coordinates i.e. indicator = 0.5 contour is at the
Cartesian-cell vertex. However, zero length/area elements do not pose any difficulty in establishing a valid con-
nectivity-data and are easily deleted using the marker-deletion procedure.

Occasionally, two or more disconnected polygons may be noticed in a cell (e.g. Fig. 6(a)). Presence of more
than six markers in a 3D Cartesian cell produces some obvious algorithmic difficulties in terms of how to
define the interface polygons using the cloud of markers on the Cartesian edges. As shown in Fig. 6(a), eight
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Illustration of a 2D cell-by-cell reconstruction: (a) Markers on edges with opposite vertex-flags (0 and 1) are connected to form

1, e2, and e3 in cells cell3, cell1 and cell4, respectively; (b) markers p1, p2 and p3 are connected in cell1 and cell2 irrespective of their
al coordinates.



Fig. 6. Cell-by-cell interface reconstruction: (a) a cell with eight markers and one way to define two polygons; (b) a tetrahedral cell can
contain at the most four markers and hence only one surface segment; (c) two ways of connecting four markers based on the vertex flags of
the triangulated cell-edges.

Fig. 7. Typical polygons reconstructed inside Cartesian cells shown with corresponding vertex flags.
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markers can be connected in at least two ways to define two interface segments. Ambiguities with multiple
polygons can be easily avoided by performing the reconstruction in tetrahedral cells that are temporarily cre-
ated by breaking the Cartesian cells around the interface. A tetrahedral cell, using the vertex flag information,
can have only three or four markers, and hence only one polygon (Fig. 6(b)). Equivalently, in 2D, the vertex-
flags of triangulated cells can be used to decide the connectivity within a cell, as shown in Fig. 6(c). The present
work creates markers only on Cartesian cell edges. The possibility of markers on tetrahedral cell-edges is used
only to decide the marker-connectivity within the Cartesian cell. Since the indicator function itself is smooth in
nature, polygons in Fig. 7 are the most frequently observed topologies. The non-triangular polygons are bro-
ken into triangles by inserting a marker at the center.

4. Adaptive grid for flow computation

A dynamically adaptive Cartesian grid, with the interface location and solution features as the adaptation
criteria, is employed to compute the flow equations. To avoid errors due to non-uniform cells near the inter-
face, few layers of cells (�10) across the interface are kept at maximum desired resolution. The underlying grid
data is stored in an unstructured format [25] allowing fast access to the connectivity-queries issued by the flow-
solver. Outline of the grid generation technique and the flow computation are described in the following sec-
tions. A comprehensive account of the grid generation and the solution-algorithms can be found in [8].

4.1. Grid generation

The computational domain is uniformly divided into a prescribed number of cells in each coordinate direc-
tion. This base grid is locally refined to prescribed levels, keeping eight to ten layers of cells across the interface
at maximum resolution. Various stages of grid generation, starting from a base grid and recursively refining
for desired interface resolution, is shown in Fig. 8. For demonstration, only up to four layers of cells across the
interface in Fig. 8 were kept at uniform refinement-level. The refinement is isotropic in nature and cells sharing
a face are not allowed to differ by more than one level. For simplification of the solution algorithm, same
restriction on the cell-size is also placed on the corner cells.



Fig. 8. Grid generation process: (a) 10 · 10 base grid; (b) grid after two successive levels of adaptation; (c) grid after four levels of
refinement.
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Since the grid within eight to ten layers across the interface is at maximum resolution, it avoids non-uni-
form cells in the critical areas where fluid properties undergo fast variations. As the computation progresses,
a solution-based adaptation is also performed in regions away from the interface. Although more sophisti-
cated error indicators for solution-based adaptation can be employed from literature, the present work uses
a simple velocity-curl-based criterion [26] that works well for viscous flows. It computes a cell-parameter n
and the standard deviation Sd, using Eq. (6). The terms l and Ncell represent the length scale (cube root of
cell-volume) and the total number of Cartesian cells, respectively. The decision to refine or coarsen a cell is
made by using the criteria shown in Eq. (7).
fcell ¼ jr � ujl3=2

Sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N cell

X
i¼1;N cell
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4.2. Navier–Stokes computation

A projection method is used for temporal integration of the incompressible-flow equations, where an inter-
mediate velocity field u* is computed and projected into a divergence-free space (Eq. (8)). The pressure Poisson
equation for the velocity correction is solved using conjugate gradient method. The convection term is treated
using the 2nd order Adam–Bashforth or Runge–Kutta method. The diffusion terms are discretized using
Crank–Nicholson technique. The surface tension and gravitational terms are treated implicitly.
u� ¼ un þ Dt
�r � uu�rpn þr � sþ F nþ1
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The staggered grid arrangement stores the face-normal velocity component on Cartesian faces and other
variables (pressure, density, viscosity, etc.) are stored at the cell centers (Fig. 9(a)) [18]. The velocity-constraint
of Losasso et al. [19] is used to simplify the spatial discretization on non-uniform cells. With this constraint,
the fine faces (face1 and face2) in Fig. 9(b) see the same velocity field (U1 = U2). In order to apply the same
amount of velocity correction on face1 and face2, the corresponding face-normal pressure gradients are also
kept the same (Eq. (9) and Fig. 9(b))
P x1 ¼ P x2 ¼
ðP 1 þ P 2Þ � 2P 3

2d
ð9Þ
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Fig. 9. Staggered grid discretization: (a) grid arrangement; (b) velocities and pressure gradients on fine faces, face1 and face2, of a coarse
cell are constrained as U1 = U2 and Px1 = Px2 i.e. face1 and face2 have the same control volume defined by the dashed line.
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4.2.1. Spatial discretization of convection term

The convection term in finite volume form, integrated over the control-volume faces, can be represented as
Fig. 10
the top
Z
CV
r � ð/UÞdV ¼

X
/U � ndA ¼

X
/U cf dA ð10Þ
The normal velocities are computed appropriately to maintain the divergence free condition within each
control-volume i.e.

P
U cf dA ¼ 0. As an example, the control-volume face-normal velocities (Ucf) in

Fig. 10(a) are computed, using area-weighted averaging, as:
U cf1 ¼ 0:5ðU 1 þ U 2Þ
U cf2 ¼ 0:5ðU 1 þ U 3Þ
U cf3 ¼ 0:5ðU 1 þ U 4Þ

U cf4 ¼
ðU 5Area1 þ U 6Area2Þ

Area1 þArea2

ð11Þ
The momentum flux / on control-volume faces are computed using linear interpolation of the face-normal
velocities. To conserve the momentum flux across non-uniform grid cells, Fig. 10(b) represents another
approximation used for dealing with T-node junctions. It computes the flux through the top face of the con-
trol-volume for velocity U1, and distributes it equally to the control-volume for velocities U2 and U3.
 

U1

U1

U6

Ucf2 U3

U2

U4

Ucf1

U6U5
Ucf4

Ucf3

Area1 Area2

 

f
f/2f/2

U2 U3

U1

a b
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4.2.2. Spatial discretization of viscous term

The momentum equation with source terms due to surface tension and gravity lumped into (Su,Sv,Sw), can
be represented as
Table
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The last and the penultimate viscous terms in the above equations come from $ Æl($Tu) and $ Æl($u),
respectively. The discretization of $ Æl($u) requires computation of velocity gradients normal to the con-

trol-volume-faces, while the terms from $ Æl($Tu) require computation of mixed derivatives. Discretization
of $ Æl($u) term follows the strategy outlined by Fig. 10. The terms due to $ Æl($Tu) are added only around
the interface, where the viscosity is spatially varying, producing an algorithmically convenient discretization
on the locally uniform grid in the vicinity of the interface. Owing to the incompressibility condition and con-
stant viscosity in most of the domain, the contributions due to $ Æl($Tu) are neglected in cells away from the
interface.

5. Results and discussion

In the following sections, we will present selected case studies highlighting the current approach for han-
dling various features associated with interfacial fluid flows. Specific cases, characterizing the conservative
interface restructuring and reconstruction, are presented to address the accuracy and mass-conservation
issues.

The overall capabilities of the developed algorithms and techniques are demonstrated via a select set of
rising bubble and drop collision computations. Numerous dimensionless parameters can be identified for
such complex flow problems. The dimensionless parameters used in the present computations are listed
in Table 1. The spurious velocity computations, characterizing the effect of interface reconstruction, use
the Capillary number to measure the maximum dimensionless velocity for a chosen Laplace number as
the input parameter.

The rising bubble computations with single and multiple bubbles use Eötvos number and Morton number
(Table 1) as the dimensionless parameters. The fluid properties outside the interface are used as the reference.
The terms d, Dq denote the bubble diameter and difference in fluid densities, respectively. The rise velocities are
presented in terms of Reynolds number.

Collision of two equal size drops uses the Weber number and Reynolds number as the input parameters.
The impact velocity (Fig. 16(a)) is used as the reference velocity scale. The properties of fluid inside the drop
are used as the reference. The eccentricity of collision is defined using the impact parameter defined in
Table 1.
1
mensionless parameters

ted case Dimensionless parameters

us velocity computation Capillary number (Ca = lUmax/r)
Laplace number (La = qrd/l2)

bubble computations Eötvos number (Eo = gDq d2/r)
Morton number (M = gl4Dq/q2r3)
Reynolds number (Re = qUd/l)

drop collision Impact parameter (B = h/d) (Fig. 16(a))
Weber number (We = qU2d/r)
Reynolds number (Re = qUd/l)
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5.1. Interface in a time-reversed vortex field: effect of conservative restructuring

A spherical interface is placed in a time-reversed vortex field [5] to test the effect of conservative restructur-
ing, and it’s accuracy is compared with a non-conservative approach that deletes edges by collapsing them to
the midpoint. Due to the time-reversed nature of the imposed flow, the spherical interface deforms severely
and returns back to the original shape, albeit with some numerical errors. These errors are due to marker
advection using the interpolated velocity field, and interface restructuring. The computations are performed
using a sphere of diameter 0.15 placed at (0.5,0.75,0.5) inside a unit cube centered at (0.5,0.5,0.5)
(Fig. 11(a)). The time reversed vortex field with period T = 4 in Eq. (13) is imposed in the computational
domain. The shape history computed for a 60 · 60 · 60 grid is shown in Fig. 11(b).

The time history of the interface-volume error and its grid convergence characteristics are presented in
Fig. 12. For this test, no explicit interface-volume correction was applied and the phase volume error with con-
servative restructuring is solely due to marker advection. The conservative method was observed to perform
considerably well showing a better than quadratic convergence with grid refinement.
Fig. 11
history
uðx; y; zÞ ¼ cosðpt=T Þ sin2ðpxÞðsinð2pzÞ � sinð2pyÞÞ
vðx; y; zÞ ¼ cosðpt=T Þ sin2ðpyÞðsinð2pxÞ � sinð2pzÞÞ
wðx; y; zÞ ¼ cosðpt=T Þ sin2ðpzÞðsinð2pyÞ � sinð2pxÞÞ

ð13Þ
5.2. Effect of interface reconstruction

Since the Indicator = 0.5 contour is only an approximation of the actual interface, the reconstructed inter-
face has a slightly different volume than the interface before reconstruction. This section characterizes the
magnitude of such losses and the required corrections.

Since the reconstruction perturbs the interface, its effect on spurious currents for static bubble computation
were also observed, suggesting that the cumulative effect of reconstruction for a given computation depends on
the reconstruction frequency and its relation with the time scales of the flow.

5.2.1. Effect on mass-conservation
A spherical interface placed in a Cartesian grid was reconstructed for different background grid resolutions.

The volume losses with varying number of grid-cells per interface-diameter are presented in Table 3, exhibiting
the expected [13] quadratic grid-convergence rate. The volume errors (DV) produced by reconstruction are
corrected explicitly by perturbing the markers in local normal direction. With the original surface area and
interface volume denoted by A0 and V0, the approximate radial perturbation, required for the volume correc-
tion, can be estimated using Eq. (14). This correction term exhibits a quadratic convergence rate as shown in
Table 2 (the grid cell-size D in Table 2 reduces by a factor of two with increasing resolution). Considering that
. Interface in a time reversed vortex field test: (a) a spherical interface placed in a time reversed vortex field; (b) computed shape
for period T = 4.



Table 2
Effect of reconstruction on mass conservation and the magnitude of radial perturbation required to correct it

Grid cell per diameter
N = d/D

% Volume defect without explicit
correction 100jDV/V0j

Approximate radial perturbation
jDrj � (jDVjN/6V0)D

10 �7.60 1.27 · 10�1D
20 �1.99 6.63 · 10�2D
40 �0.49 3.25 · 10�2D
80 �0.12 1.64 · 10�2D
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Fig. 12. Volume error for interface in a time reversed vortex field: (a) volume error on a 30 · 30 · 30 grid; (b) final (t = T) volume error for
different grid resolutions (30 · 30 · 30, 60 · 60 · 60 and 120 · 120 · 120) where the dotted line shows a quadratic convergence rate.
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the fluid properties are smeared over four cells across the interface, the amount of radial disturbance caused by
even moderately resolved grids (N = 20) is found to be reasonably small.
jDrj � jDV j
A0

¼ jDV j
4pr2

0

¼ jDV j
V 0

r0

3
¼ jDV j

V 0

N
6

D ð14Þ
5.2.2. Effect on spurious currents

Spurious velocities or parasitic currents, clearly seen in static bubble simulations, are unphysical velocity
fields created due to numerical errors caused by imbalance of interfacial stresses. The maximum spurious
velocity in terms of Capillary number was found to be O(10�4) for the tested Laplace numbers in the range
from 250 to 12000. These magnitudes are consistent with the observations in literature [7,17].

The effect of interface reconstruction on spurious velocity currents was qualitatively the same as reported in
[13] where temporary spikes in spurious velocities are observed after each reconstruction. Using Fig. 13, it can
be observed that frequent reconstruction based on the Capillary time scale (dl/r) can produce excessive dis-
turbances that do not get sufficient time to damp-out between successive reconstructions, causing an order of
magnitude larger spurious velocity error. In order to minimize such disturbances, reconstruction is performed
sparingly and selectively: only for interfaces that indicate a potential topology change in the probe-based-test
described earlier.

5.3. Buoyancy driven rising bubbles

The fluid density and viscosity ratios used for rising bubble computations are set to 100. The following sec-
tions present several computations for rising bubbles, including an off-axis coalescence of two rising bubbles,
to establish the accuracy of the present algorithms.
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5.3.1. Single rising bubble

The computations were performed in a domain of size = (5d, 10d, 5d) with three levels of refinement over
12 · 24 · 12 base grid. An open boundary condition was specified on the top boundary (zero velocity gradients
and constant pressure) and slip condition was specified elsewhere. The computed terminal shapes and stream-
lines are shown in Fig. 14. The terminal rise-Reynolds number for various shape regimes are presented in
Table 3, showing an excellent agreement with the estimates from the diagram of Clift et al. [27] (Fig. 14(e))
and the volume-of-fluid computations of Annaland et al. [28].
Fig. 14. Computed shapes and streamlines for cases in Table 4 falling in (a) spherical, (b) ellipsoidal, (c) dimpled ellipsoidal and (d) skirted
regimes; (e) shape diagram of Clift et al. [27].

Table 3
Computed terminal rise Reynolds numbers in different terminal shape-regimes

M Eo Terminal shape regime (Fig. 14(e)) Rise Reynolds number

From [27] From [28] Computed

1.26 · 10�3 0.971 Spherical 1.7 1.6 1.6
1.00 · 10�1 9.71 Ellipsoidal 4.6 4.3 4.6
1.00 · 10�3 97.1 Dimpled ellipsoidal 1.5 1.7 1.6
9.71 · 10�1 97.1 Skirted 20 18.0 18.7
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5.3.2. Off-axis coalescence of two bubbles

The fluid properties and computational set-up used for the computation are the same as in the volume-
of-fluid computations of Annaland et al. [28] shown in Table 4. The Morton and Eötvos numbers are set
to M = 2 · 10�4 and Eo = 16 falling between the skirted and spherical cap regimes in Fig. 14(e). The top bub-
ble-center in Fig. 15(a) is at (0,0,0), located at a distance of 2.5d from the bottom of the computational
domain. The initial position of bottom bubble-center is at (0.8d,�1.5d, 0.0). The computed bubble shape
history along with a cross-section of the grid in x–y-plane is shown in Fig. 15(a). The computed instantaneous
shapes are in good agreement with the computations in [28] and capture the qualitative behavior exhibited in
the experiments of Brereton and Korotney [29] (Fig. 15(c)).

The coalescence process involves the bottom bubble moving into the wake of leading bubble and acceler-
ating to cause eventual coalescence. The dimensionless x-coordinates of the top and bottom bubbles, along
with the rise-Reynolds number before coalescence (Fig. 15(b)), show that the top bubble remains practically
unaffected by the presence of the trailing bubble. The rise-Reynolds number of the leading bubble is roughly
between 45 and 50 (47.8 at t = 0.07 s), consistent with the observations in literature: a value of 50 from the
diagram of Clift et al. [27] for a single rising bubble; experimental and computed values of 43 and 40, respec-
tively, reported by Annaland et al. [28].
Table 4
Computational parameters for off-axis coalescence of two rising bubbles

Individual bubble diameters (d) 0.01 m
Computational domain (4d, 8d, 4d) (0.04, 0.08, 0.04) m
Grid: Three levels of refinement on 10 · 20 · 10 base grid Max. resolution = 80 · 160 · 80
Fluid properties outside interface (q1,l1) 1000 kg/m3, 0.1 kg/ms
Fluid inside interface (q2,l2) 10 kg/m3, 0.001 kg/ms
Surface tension (r) 0.1 N/m

Fig. 15. Off-axis coalescence of rising bubbles: (a) computed shape history; (b) dimensional x-coordinates and rise-Reynolds number of
the leading (top bubble) and trailing (bottom bubble) bubbles; (c) experimental photographs by Brereton and Korotney [29] at 0.03 s
interval (taken from [28]).
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5.4. Binary drop collision

A drop collision case with two equal size tetradecane (C14H30) drops in nitrogen medium is computed to
further validate and highlight the capabilities of the developed algorithms and implementations. A drop col-
lision case with Reynolds and Weber numbers of 228.0 and 37.2 is computed and compared with the exper-
imental photographs by Qian and Law [30]. The impact parameter B defined in Fig. 16(a) is set to 0.01
producing a near head-on collision. The fluid properties shown in Table 5 produce density and viscosity ratios
of 666.1 and 179.3, respectively. The Weber number 37.2 with a near head-on collision is beyond the estimated
critical Weber number of 34 after which droplets separate following an initial coalescence (regime 4 in
Fig. 16(b)) [30].

The computations are performed on a 7.5d · 7.5d · 7.5d domain with four levels of refinement over an
11 · 11 · 11 base grid. The collisions take place in the x–y-plane and the initial horizontal separation between
the drop-centers in the x–y-plane, approximated from the figures of Qian and Law [30], is set to 1.25 times the
drop diameter. The initial velocity conditions are obtained by imposing the impact velocity field in all the cells
that have indicator function less than 1.0. The imposed velocity field is projected in a divergence-free space and
used as the initial velocity condition. All the computational boundaries are assigned outlet condition imposing
zero normal velocity gradient and constant atmospheric pressure. Several snapshots of the computational
domain (cross-section in the x–y-plane) are shown in Fig. 17. The time history of the computational data-size
is shown in Fig. 17.

The computed drop-shapes and the velocity vectors, along with experimental photographs, are shown in
Fig. 18. The velocity vectors further highlight the dynamics and mechanism of collision, where a dimpled disc
is formed following the initial coalescence. The high curvature at the disc-rim creates a high-pressure zone as
compared to the almost flat disc-center (t = 0.33 ms) causing contraction that eventually moves towards pro-
ducing a cylindrical shape. Subsequently, the blobs at the cylinder-ends create a high-pressure zone that
attempts to contract the cylindrical. However, the axial velocities (shown at t = 1.26 ms and 1.71 ms) at the
cylinder-neck are strong enough to produce a momentary breakup that is quickly followed by a re-merger
due to the overall center-ward motion of the droplets.
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Fig. 16. Binary drop collision computation: (a) impact parameter B is defined as B = h/d; (b) collision-outcome diagram adapted from
[30].

Table 5
Properties of tetradecane and nitrogen [31]

Medium q (kg/m3) l (kg/ms) r (N/m)

Tetradecane 758.0 2.128 · 10�3 0.026
Nitrogen 1.138 1.187 · 10�5



Fig. 17. Several cross-section views of the computational grid and the time history of Cartesian grid-size (number of 3D cells) for binary
drop collision.

Fig. 18. Binary drop collision: (a) computed time history; (b) experimental photographs [30]; (c) interface and velocity vectors in a cross-
section plane.
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6. Conclusion

A three-dimensional local adaptive grid method along with the immersed boundary method was presented.
A mass-conserving algorithm for marker addition and deletion was employed to control the interface resolu-
tion. The interface connectivity data offers an enhanced flexibility in dealing with multiple interfaces in close
proximity, as in dense bubbly flows. The level-contour-based reconstruction technique provides a convenient
approach in dealing with complex topology changes. The key steps of the reconstruction algorithm along with
several issues related to maintaining valid connectivity information were presented. The call for interface
reconstruction was automated by a simple probe-based criterion to check for potential topology changes.
The accuracy of restructuring technique was characterized using an interface placed in a time reversed vortex
field. The effect of reconstruction on mass-conservation and spurious velocities was highlighted. The back-
ground Cartesian grid was dynamically adapted based on the interface location and solution features, and
a staggered grid discretization approach was used for the Navier–Stokes computation. The capabilities of
the presently developed algorithms in studying interfacial-flows/bubble-dynamics were demonstrated via sev-
eral rising bubble and drop collision/coalescence computations.
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